Scheduled Special Issues

Data assimilation in carbon / biogeochemical cycles: consistent assimilation of multiple data streams (BG/ACP/GMD Inter-Journal SI)

  • Guest Editors: M. Scholze, M. Heimann, V. Brovkin, C. Sierra, and C. Gerbig
  • Timeline: 1 Jan 2015 - 1 May 2015

Biogeochemical processes, tropospheric chemistry and interactions across the ocean–atmosphere interface in the coastal upwelling off Peru (BG/OS/ACP/AMT Inter-Journal SI)

  • Guest Editors: H. Bange, A. Chaigneau, A. Engel, C. Garbe, A. Kock, W. Naqvi, B. Thamdrup, B. Ward, C. Robinson, and A. Richter
  • Timeline: 1 Aug 2014 – 31 Jan 2015

The R/V Meteor cruise M91 (Callao-Callao) took place off Peru from 01 December to 26 December 2012. The overall goal of M91 was to conduct an integrated biogeochemical study on the upwelling region off Peru and its adjacent oxygen minimum zone in order to assess its importance for the emissions of various climate-relevant atmospheric trace gases and tropospheric chemistry. The various work packages of M91 included measurements of (1) atmospheric and dissolved trace gases, (2) aerosols, (3) nitrogen processes and isotopes in the water column, (4) dissolved organic matter in the surface microlayer, (5) upwelling velocity, and (6) exchange fluxes across the ocean−atmosphere interface. M91 was funded by the German BMBF project SOPRAN (Surface Ocean Processes in the Anthropocene; http://www.sopran.pangaea.de), which is a contribution to the International SOLAS (Surface Ocean – Lower Atmosphere Study; http://www.solas-int.org).

Marine trace gases and aerosols over tropical oceans (AMT/ACP Inter-Journal SI)

  • Guest Editors: L. Carpenter, M. Uematsu, and R. Volkamer
  • Timeline: 02 Jun 2014 – 31 Jul 2015

Data collection, analysis and application of speciated atmospheric mercury

  • Guest Editors: R. Ebinghaus and L. Zhang
  • Timeline: 01 Jan 2015 – 31 Dec 2015

Atmospheric composition change: science for policy

  • Guest Editors: G.P. Brasseur and U. Pöschl
  • Timeline: 01 May 2014 – 31 Oct 2014

Meso-scale aerosol processes, comparison and validation studies from DRAGON networks

  • Guest Editors: P. Quinn, P. Formenti, and M. Schulz
  • Timeline: 01 Apr 2014 – 02 Apr 2015

Provide a summary of Meso-scale aerosol field campaign research from dense distributions of remote sensing (RS) networks such as AERONET and related in situ and RS aerosol observations from surface, airborne and satellite platforms.

Recent aerosol field campaigns with AERONET have emphasized local to regional aerosol characterization for a variety of aerosol types, concentrations and meteorological regimes. The resulting networks called Distributed Regional Aerosol Gridded Observation Networks (DRAGON) are meso-scale short-term dense networks of sun and sky scanning photometers and ancillary observations established to characterize aerosol dynamics at a resolution commensurate with meso-scale aerosol processes. The DRAGON campaigns have been carried out successfully in the U.S. (Washington, D.C./Maryland, Texas and California), as well as in Asia including China, Korea, Japan, Malaysia and Singapore and in Germany for the past several years. This special issue will emphasize results from these DRAGON campaigns and similar network data for aerosol process studies, aerosol-cloud interactions, regional radiative forcing, in-network retrieval comparisons and validations, in situ vs. remote sensing comparisons as well as satellite and airborne validations and comparisons.

Uintah Basin Winter Ozone Studies (ACP/AMT Inter-Journal SI)

  • Guest Editors: J. Seinfeld, P. Shepson, J. Collett, and E. Apel
  • Timeline: 27 Mar 2014 – 31 May 2015

Elevated ground-level ozone has been observed in the wintertime in two air basins in the western US. These basins have extensive oil and gas production operations that involve a unique combination of NOx and VOC sources, in conjunction with persistent cold pool conditions creating a shallow boundary layer over snow-covered ground. The Uintah Basin Winter Ozone Studies (UBWOS) took place during the winters of 2012, 2013, and 2014 in the Northeast corner of the state of Utah. The goal of these intensives was to obtain a detailed understanding of the chemistry causing high ozone in this air basin to inform the development of effective control strategies could be implemented. This special issue will collect papers describing some of the measurement techniques employed and analysis of the extensive data sets of VOC, odd-nitrogen, radical source species, fine-scale meteorology, and spatial distributions of O3.

Oxidant Production over Antarctic Land and its Export (OPALE)

  • Guest Editors: T. Bartels-Rausch, J. W. Bottenheim, C. Barbante, and S. Preunkert
  • Timeline: 11 Mar 2014 – 31 March 2015

The OPALE (Oxidant Production over Antarctica Land and its Export) project aims to quantify, understand, and model the level of oxidants present in the lower atmosphere of Antarctica. The oxidants are very abundant there in relation with the presence of large snow and ice-covered areas. Previous studies focused on oxidants present in the lower atmosphere at the South Pole and at several coastal sites located in West Antarctica. Based on atmospheric measurements carried out at the Concordia (DC) station located at 3250 m elevation on the high Antarctic plateau and at the coastal site of Dumont d’Urville (DDU), the project focuses on oxidants present over the East part of the Antarctic continent. The obtained data would be of great interest for the scientific communities working on numerous aspects of the global change (coupling atmosphere-ice-climate, interpretation of deep ice cores mainly drilled in East Antarctica, atmospheric chemistry over snow-covered regions).

Atmospheric measurements carried out at DDU and DC included HOx radicals, chemical species controlling the radical productions (O3, HONO, H2O2, HCHO, NO, and NO2), and an isotopic approach to highlight oxidation mechanisms. The field data obtained during the two field campaigns are used to:

  • Examine the levels of oxidants over the high Antarctic plateau and factors controlling their budgets;
  • Evaluate the impact of this very oxidizing boundary layer at coastal regions of East Antarctica on the basis of in situ observations and transport-chemistry model simulations.

HD(CP)2 Observational Prototype Experiment

  • Guest Editors: S. Buehler and H. Russchenberg
  • Timeline: 01 Mar 2014 – 31 Dec 2015

The "HD(CP)2 Observational Prototype Experiment" HOPE has been designed to provide a unique view into clouds and their radiative aspects by combining state-of-the art remote sensing instrumentation. Such dense observations on process scale are necessary to capture the sub-grid variability of todays numerical weather prediction model and to assess microphysical properties that are subject to parameterizations even at high-resolution simulations. Specifically, HOPE observations will be used for a critical model evaluation HD(CP)2 that will be run at 100 m resolution over central Europe. The main goals of HOPE are to provide a most complete set of calibrated products of atmospheric parameters and to identify processes relevant for the formation of clouds and precipitation.

In order to achieve the dense instrumental coverage the agricultural area around the atmospheric observatory JOYCE (Jülich Observatory for Cloud Evolution) in Western Germany was chosen and complemented with two additional supersites and networks from April to May 2013. Three supersites formed a triangle with about 4 km side length. The deployed instruments include Doppler lidars, Raman lidars (aerosol & cloud particles, water vapor, temperature), water vapor DIAL, ceilometers, microwave radiometers, cloud Doppler radars, sun photometer, different types of meteorological towers (up to 120 m), a network pyranometer, sky imagers, as well as precipitation radar partly with polarization capabilities. This set of instruments forms the densest setup of remote sensing and surface flux instruments to date.

Together with in total radiosonde launches (every 3 hours during intensive observation periods) the instruments captured the mean and turbulent thermodynamic state of the atmosphere and the vertically resolved and to some extend the 3d-resolved distribution of aerosol, cloud- and precipitation-particles as function of time over a horizontal domain of 10 by 7 km2. Horizontal fields of standard meteorological parameter and surface fluxes of latent and sensible heat as well as solar and thermal radiation fluxes have been obtained. For the first time to our knowledge, a combination of scanning water vapor, temperature and Doppler lidar as well as coordinated scans with microwave radiometer and cloud radar were performed. Categories of meteorological events were identified and data examples of these categories will be presented and discussed. It is demonstrated how the combination of active and passive, optical and microwave ground-based remote sensing yields also via desired redundancy a consistent picture of the atmospheric state and that through temporal changes of atmospheric and surface flux properties insights on lower atmospheric processes are revealed. The contributing manuscripts will briefly describe the set of instruments and the corresponding retrieved physical parameter with their spatial and temporal resolution followed by a synopsis of the meteorological conditions during the campaign. On the basis of characteristic intensive observation periods, case studies for clear skies, convective clouds, and precipitation will be presented and discussed. In a follow-up campaign in September 2013 in Melpitz, Germany, additional aerosol and cloud microphysics measurements on-board a helicopter-based platform were performed and will be reported as well.

South AMerican Biomass Burning Analysis (SAMBBA)

  • Guest Editors: H. Coe, K. Longo, M. Andreae, S. Martin, and G. Myhre
  • Timeline: 01 Jan 2014 – 31 Jul 2018

Biomass burning aerosol (BBA) exerts a considerable impact on regional radiation budgets as it significantly perturbs the surface fluxes and atmospheric heating rates and its cloud nucleating (CCN) properties perturb cloud microphysics and hence affect cloud radiative properties, precipitation and cloud lifetime. It is likely that such large influences on heating rates and CCN will affect regional weather predictions in addition to climatic changes. Amazonia is one of the most important biomass burning regions in the world, being significantly impacted by intense biomass burning during the dry season leading to highly turbid conditions, and is therefore a key environment for quantifying these processes and determining the influence of these interactions on the weather and climate of the region.

The South AMerican Biomass Burning Analyses (SAMBBA) programme is a major international consortium programme. The programme has delivered a suite of ground, aircraft and satellite measurements of Amazonian Biomass Burning Aerosol during a field study that took place in September 2012. SAMBBA has used this data in a suite of analyses that aims to:

  1. improve our knowledge of BB emissions;
  2. challenge and improve the latest aerosol process models;
  3. challenge and improve satellite retrievals;
  4. test predictions of aerosol influences on regional climate and weather over Amazonia and the surrounding regions made using the next generation of climate and NWP models with extensive prognostic aerosol schemes; and
  5. assess the impact of .biomass burning on the Amazonian biosphere.

The main field experiment was based in Porto Velho, Brazil and investigated the dry season and onset of the wet season. The UK large research aircraft (FAAM) sampled aerosol chemical, physical and optical properties and gas phase precursor concentrations. Measurements of radiation were also made using advanced radiometers on board the aircraft and satellite data are also being used. The influences of biomass burning aerosols are highly significant at local, weather, seasonal, and climate temporal scales necessitating the use of a hierarchy of models to establish and test key processes and quantify impacts. The study is challenging models carrying detailed process descriptions of biomass burning aerosols with the new, comprehensive observations being made during SAMBBA to evaluate model performance and to improve parameterisations. Numerical Weather Prediction and Climate model simulations with a range of complexity and spatial resolution are being used to investigate the ways in which absorbing aerosol may influence dynamics and climate on regional and wider scales. At the heart of the approach is the use of a new range of models that can investigate such interactions using coupled descriptions of aerosols and clouds to fully investigate feedbacks at spatial scales that are sufficiently well resolved to assess such processes.

The community version of the Weather Research and Forecasting Model as it is coupled with Chemistry (WRF-Chem) (GMD/ACP Inter-Journal SI)

  • Guest Editor: G. Grell
  • Timeline: 20 Dec 2013 – 31 Dec 2018

The Weather Research and Forecast community modelling system coupled with Chemistry (WRF-Chem) provides the capability to simulate and forecast weather, trace gases, and aerosols from hemispheric to urban scales. WRF-Chem is a community model. WRF-Chem is an online modelling system which includes the treatment of the aerosol direct and indirect effect. It incorporates many choices for gas phase chemistry and aerosols with degrees of complexity that are suitable for forecasting and research applications. Due to its versatility WRF-Chem is attracting a large user and developer community world-wide. The present time-unlimited Special Issue hosts scientific technical documentation and evaluation manuscripts concerned with the community version of WRF-Chem.

Results from the ice nucleation research unit (INUIT) (ACP/AMT Inter-Journal SI)

  • Guest Editors: J. Abbatt, A. Bertram, D. J. Cziczo, and B Ervens
  • Timeline: 18 Dec 2013 – 01 Jan 2017

INUIT - Ice Nuclei Research Unit:

Ice crystals play an important role for the radiative properties of clouds as well as for the formation of precipitation. Mixed-phase clouds are clouds that consist of both, super-cooled liquid droplets and ice particles. They account for a large fraction of the clouds in the atmosphere but our knowledge on the microphysical properties of these clouds is still limited. An important question is how ice forms in these clouds. While it is well established that an ice nucleus is needed as a seed for the initial formation of an ice crystal in mixed-phase clouds many questions remain to be answered on the concentration and variability of atmospheric ice nuclei and their physico-chemical properties.

The Research Unit "INUIT" (Ice Nuclei research UnIT) studies heterogeneous ice formation in the atmosphere. The studies include laboratory investigations on the nature of the nucleation process and on the chemical, microphysical and biological characterization of atmospherically relevant ice nuclei as a function of temperature and water saturation. Intensive field experiments are conducted as well as monitoring surveys to study the number concentration, variability, size, chemical composition, surface properties and sources of atmospheric ice nuclei in different freezing modes. Various state-of-the-art methods and facilities are used for the characterization of the ice nuclei. Ice nucleating properties of mineral dust particles, volcanic ash, and biological ice nuclei are a focus of attention of the INUIT research unit. The results of the experimental investigations are fed into a cloud process model and a cloud-resolving meso-scale model to improve the representation of clouds in the models, to simulate cloud processes and to quantify the contribution of ice nuclei types and freezing modes.

The INUIT research unit comprises 9 research projects from 8 partner institutes (Goethe-University of Frankfurt/Main, University of Bielefeld, University of Mainz, Technical University Darmstadt, Leibniz-Institute for Tropospheric Research, Max-Planck Institute for Chemistry and Karlsruhe Institute for Technology). It is funded by the Deutsche Forschungsgemeinschaft DFG (grant no. FOR 1525).

The Boundary-Layer Late Afternoon and Sunset Turbulence (BLLAST) project (ACP/AMT Inter-Journal SI)

  • Guest Editors: R. J. Beare, Y. Brunet, E. Pardyjak, and S. Galmarini
  • Timeline: 07 Nov 2013 – 31 Dec 2014

The planetary boundary layer plays a vital role in the earth system through its controls on the transfer of heat, momentum, humidity, and trace gases between the surface and the atmosphere. The transition that occurs in late afternoon, from the mixed convective boundary layer to a residual layer overlying a stably stratified surface layer in late afternoon raises several scientific issues that are still poorly understood. For example, there is still a need to relate the characteristics of the turbulence energy decay and its vertical structure with the boundary-layer processes and forcings. Also, the evolution of the characteristic length scales of turbulence remains unclear, and needs more observations and understanding.

The BLLAST project has gathered a group of research scientists from several countries in Europe and the US to work together with the purpose of increasing our knowledge of the late afternoon turbulence processes in order to improve the representation of the diurnal cycle in the numerical weather prediction and global models. The BLLAST project emerged in 2009, and lead to a field campaign that was conducted from 14 June to 8 July 2011 in southern France. The field campaign consisted of a range of integrated instrument platforms including: full-size aircraft, Remotely Piloted Airplane Systems (RPAS), remote sensing instruments, radiosoundings, tethered balloons, surface flux stations, and various meteorological towers deployed over different heterogeneous surfaces. These instruments measured the differences in the vertical structure and evolution of the late afternoon transition among a mosaic of vegetated surfaces. This special issue is an expose of current BLLAST studies that include: the analysis of field data, Large Eddy Simulations (LES) and mesoscale simulations. These issue aims to improve our understanding of processes, develop new parameterizations, and evaluate forecast models during this transitional period.

Study of Ozone, Aerosols and Radiation over the Tibetan Plateau (SOAR-TP)

  • Guest Editors: R. Sander, H. Su, T. Wagner, T. Wang, Y. Cheng, and X. Xu
  • Timeline: 31 Oct 2013 – 31 Dec 2017

The Tibetan Plateau, also known in China as the Qinghai-Tibet Plateau, has a large influence on atmospheric circulation, hydrological cycle and climate in East Asia as well as the Northern Hemisphere. The plateau, sometimes called "the Roof of the World" or "the Third Pole", covers a huge area located in 73-105 E longitude and 26-40 N latitude, with mean surface elevation of 4000-5000 m above sea level. It has long been considered as one of the remote regions in the Eurasian continent that are relatively less influenced by pollution from human activities. While natural processes that control the temporal and spatial variations of atmospheric composition over the Tibetan Plateau are still inadequately understood, the influence of long-range transport of pollutants from surrounding areas, e.g. South and Southeast Asia, and farther regions on the background atmosphere of the Tibetan Plateau and associated climate impacts have become a scientific issue to be intensively addressed.

Long-term measurements of trace gases, aerosols and radiation have been performed at several remote sites in the Tibetan Plateau region, including e.g. the Waliguan Global Baseline Station and the Shangri-la Regional Background Station (both operated by China Meteorological Administration) and the Nam-Co Comprehensive Observation and Research Station (operated by Institute of Tibetan Plateau Research, Chinese Academy of Sciences). Intensive field campaigns were carried out based on these stations and some other sites of the region during different periods to investigate the levels and variation controlling factors of atmospheric ozone and aerosols over the plateau. Observations include in-situ measurements of ozone and related trace species, in-situ and sampling measurements of aerosol physical properties and chemical composition, sounding of ozone and water vapor, lidar measurements of aerosols, and ground-based remote sensing of selected trace gases, etc. Models are also used to compare with measurement results and interpret data. The purpose of this issue is to expand our understanding of physic-chemical and transport processes that largely influence atmospheric ozone and aerosols as well as radiation over the Tibetan Plateau.

CHemistr​y and AeRosols Medit​erranean EXperiments​ (ChArMEx) (ACP/AMT ​Inter-Journal SI)​

  • Guest Editors: N. Mihalopoulos, W. Lahoz, X. Querol, C. Reeves, F. Dulac, O. Dubovik, and J.-L. Attie
  • Timeline: 14 Oct 2013 – 31 Dec 2015

VERDI - Vertical Distribution of Ice in Arctic Clouds (ACP/AMT Inter-Journal SI)

  • Guest Editors: C. Hoose, M. Shupe, and P. Eriksson
  • Timeline: 01 Dec 2013 – 31 Dec 2014

The scientific expedition VERDI (short for Vertical Distribution of Ice in Arctic Clouds) is a cooperation project of various German research institutes with the goal to measure the microphysical and optical properties of Arctic boundary-­layer clouds, and to investigate the effects that those clouds can have on the energy budget in the Arctic atmosphere. The VERDI participants have successfully performed airborne measurements of the microphysical and radiative properties of clouds in the Canadian Arctic (based in the town of Inuvik in the Northwest Territories) in April and May 2012, and are now working on the data processing and evaluation. At least seven publications on VERDI results (listed below) are planned, and it is desired to bundle these in the planned ACP/AMT inter-­journal special issue. The special issue is open for all submissions within its scope.

Limb observations of the middle atmosphere by space- and airborne instruments (ACP/AMT Inter-Journal SI)

  • Guest Editors: C. von Savigny, G. Stiller, E.Kyrölä, F. Khosrawi, P. Liebing, and S. Buehler
  • Timeline: 29 Aug 2013 – 31 Aug 2015

Spaceborne and airborne remote sensing measurements of the Earth’s atmosphere in limb geometry provide vertical profile information of atmospheric minor constituents and background parameters with generally good vertical resolution. These measurements include solar, lunar and stellar occultation measurements, measurements of thermal emissions in the microwave and infrared spectral regions, observations of limb-scattered solar radiation as well as measurements of non-thermal airglow emissions in the optical spectral range. Over the last decade Limb measurements in the different spectral regions have greatly improved our understanding of many physical and chemical processes in the Earth’s middle atmosphere, comprising the stratosphere and mesosphere.

The 7th atmospheric limb conference, held at Bremen, Germany in June 2013 was dedicated to all scientific aspects related to middle atmospheric limb measurements, including current and future missions, instrument monitoring, algorithm development and implementation, radiative transfer modeling, validation of data products and scientific analyses based on the retrieved data products. This special issue is an outcome of the 7th atmospheric limb conference, and contributions on all aspects mentioned are welcome. Note that attendance of the conference is not a prerequisite for submitting manuscripts to this special issue.

Haze-fog forecasts and near real time (NRT) data application (ACP/GMD Inter-Journal SI)

  • Guest Editors: J. Brandt, S. Gong, and X.-Y. Zhang
  • Timeline: 11 Jul 2013 – 31 Dec 2014

Air-sea flux climatology; progress and future prospects (BG/ACP/OS Inter-Journal SI)

  • Guest Editors: C. Robinson, J. Kaiser, C. McNeil, D. Woolf, J. Shutler, C. Garbe, and P. Challenor
  • Timeline: 01 Oct 2013 – 30 Jun 2014

Surface Ocean Aerosol Production (SOAP) (ACP/OS Inter-Journal SI)

  • Guest Editors: C. Law, M. Harvey, M. Smith, P. Quinn, N. Harris, and M. Hoppema
  • Timeline: 01 Jul 2013 – 31 Jul 2015

Biologically-active regions of the surface ocean support production of a range of compounds that influence aerosol particle production, composition and properties in the overlying marine boundary layer. In February-March 2012 the SOAP (Surface Ocean Aerosol Production) voyage examined biotic influences on aerosol production to the east of New Zealand, by targeting phytoplankton blooms along the Sub-Tropical Front, with the aim of constraining the relationships between DMS and aerosol flux and characteristics, and phytoplankton biomass and community composition, by multi-disciplinary research within three workpackages:

  • WP1. Surface ocean biogeochemical links with aerosol precursors;
  • WP2. Exchange rate and physical drivers of the transfer of DMS & CO2 and
  • WP3. Organic emissions, nucleation and interactions with the aerosol distribution in the overlying marine boundary layer.

The results of this research voyage will be detailed in this Special Issue, which will contain invited papers only.

9th International Carbon Dioxide Conference (ICDC9) (ESD/ACP/BG/AMT Inter-Journal SI)

  • Guest Editors: L. Bopp, V. Brovkin, J. Canadell, C. Gerbig, D. Griffith, M. Heimann, R. Keeling, Y. Luo, A. C. Manning, A. Michalak, Z. Xie, and N. Zeng
  • Timeline: 01 Jun 2013 –  31 May 2014

The International Carbon Dioxide Conference (ICDC) is the single largest conference organized by the global research community every four years to present the latest scientific findings on the science of the carbon cycle and its perturbation by human activities. The ICDC in 2013 is the 9th conference. The conference topics encompass the global carbon cycle, global and regional budgets, and processes with specialized sessions on the individual components of atmosphere, ocean and land, in the timeframes of past, present and future. It covers both fundamental science advancement and discovery, the generation of policy relevant information, and new technological observational platforms, datasets, and modeling approaches.

The three main themes of the conference are:

  • Theme 1: Past and present changes and variability
  • Theme 2: Carbon sources and sinks, their changes and trends
  • Theme 3: Future of the carbon cycle: drivers, vulnerabilities, feedbacks and management options

Conference website: http://icdc9.lasg.ac.cn

East Asia emissions assessment (EA2)

  • Guest Editors: T. Bond, G. Carmichael, G. Frost, H. Su, and Y. Cheng
  • Timeline: 01 Jul 2013 – 30 Jun 2016

Understanding emission fluxes from earth’s surface has considerable scientific importance because the variability of atmospheric composition is largely driven by emissions. Due to the rapid regional economic growth, emissions in East Asia have degraded regional air quality and visibility and damaged human health. East Asia emissions also contribute a large share of the global emissions and dominate the Asian continental outflow that travels across the Pacific. Hence they also have significant impacts on global air quality and climate and attract great attention of scientists and policy makers.

To date developing an understanding of emissions has largely relied on bottom-up approaches that aggregate fuel combustion data and emission factors. The large uncertainty in East Asia bottom-up inventories hampers interpretation of observation data, and has been recognized as the bottleneck in limiting the predictive performances of chemical transport models. The community has made considerable efforts to reduce uncertainties in emission inventories, e.g., development of improved emission models, application of inverse models with top-down constraints from in-situ and satellite observations. However, those different approaches are rarely compared and validated with each other. There are still large gaps among different top-down/bottom-up inventories.

Organized by the Global Emissions InitiAtive (GEIA) China Working Group, the East Asia Emissions Assessment (EA2) is designed to bridge these gaps through the integration of different approaches. The assessment includes inter-comparison of current bottom-up inventories in East Asia, development of novel emission inventory models, observation-based constraints on emissions, and evaluation and uncertainty analysis of different emission quantification approaches. The outputs from EA2 studies will not only help reduce uncertainties in East Asia inventories, but also provide improved emission quantification methodologies that can be applied to other world regions.

Biosphere-atmosphere exchange or organic compounds: impact of intra-canopy processes (CANOPÉE 2011-2014)

  • Guest Editors: J. Rinne, M. Kanakidou, and J. Williams
  • Timeline: 18 Jun 2013 – 31 Dec 2015

The objective of CANOPÉE is to understand and quantify the role of intra-canopy processes in the surface-atmosphere exchange of compounds, focusing on biogenic volatile organic compounds (VOCs), and especially isoprene, which is the first biogenic VOC emitted, and ozone. The novelty of our project is based on the combination of new experimental and modeling approaches, and a multi-disciplinary methodology including branch-scale to canopy-scale measurements for the structural, chemical and ecological characteristics of the canopy. A field campaign was carried out in May-June 2012 at the Observatoire de Haute Provence (OHP/O3HP) in the South part of France, in a large oak (Quercus pubescens) forest site. Measurements were set to investigate the geographical and vertical tree distribution (lidar on-board ULA); the isoprene emission rate at the branch-level (dynamic enclosure chambers); the atmospheric chemical composition inside and above the canopy together with concentrations diurnal and vertical variability for key compounds such as ozone, nitrogen oxides and a variety of VOCs (GC-MS and PTR-MS) or aerosols. Data and observations collected will be integrated in a one-dimensional model (CACHE) to improve our knowledge on the intra-canopy processes and their representation in modeling tools, and regional studies will be performed with the chemistry-transport model CHIMERE to assess the impact of such forest sites on regional chemistry and possible future evolution.

Monitoring atmospheric composition and climate, research in support of the Copernicus/GMES atmospheric service (ACP/AMT/ESSD/GMD Inter-Journal SI)

  • Guest Editors: V.-H. Peuch, R. Engelen, A. Simmons, W. Lahoz, S. Galmarini, and P. Laj
  • Timeline: 08 Jan 2013 – 31 Dec 2014

With the acute societal concerns about air quality, climate change and their effects on health and ecosystems, there is an increasing need for comprehensive, reliable and fast information services on the atmospheric environment. This is also of importance for a range of policy-relevant applications at different scales, from international treaty verification to urban planning for instance. Succeeding to GEMS (Global and regional Earth-system Monitoring using Space and in-situ data) and MACC (Monitoring Atmospheric Composition and Climate), MACC-II* (MACC- Interim Implementation) is the third in a series of projects funded since 2005 through the European Union's Seventh Framework programme to build up the atmospheric service component of the Global Monitoring for Environment and Security (GMES) / Copernicus European programme. MACC-II combines the expertise of its 36 partner institutes from 13 European countries to bridge the gap between the meteorological and environmental communities engaged in research and operational service provision. Using the extensive experience of both communities, MACC-II provides information on atmospheric composition using satellite observations, ground-based observations, and state-of-the-art numerical models (http://www.copernicus-atmosphere.eu). MACC-II not only monitors atmospheric composition over time, but also provides forecasts of air quality, dust storms, fire emissions and solar/UV radiation for a few days ahead both globally and in more detail for Europe. Furthermore, MACC-II supports studies of pollution events and possible responses to mitigate their effects, annual assessments of air quality, and the monitoring of greenhouse gases and their sources and sinks at the Earth's surface. This Special Issue focuses on the world-class research aspects that underpin the continuous development, evaluation and delivery of the GMES/Copernicus services for atmospheric composition.

*: The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7 THEME [SPA.2011.1.5-02]) under grant agreement n.283576.

ROle of Nighttime chemistry in controlling the Oxidising Capacity of the atmOsphere (RONOCO) (ACP/AMT Inter-Journal SI)

  • Guest Editors: R. L. Jones, C. Reeves, J. Thornton, and S. Brown
  • Timeline: 02 Oct 2012 – 31 Dec 2014

The EU Project SHIVA (Stratospheric Ozone: Halogen Impacts in a Varying Atmosphere) (ACP/AMT/BG/OS Inter-Journal SI)

  • Guest Editors: W. T. Sturges, J. Williams, G. Roberts, C. Robinson, and R. Sander
  • Timeline: 01 Sep 2012 – 31 Dec 2014

Background

The EU project SHIVA (Stratospheric Ozone: Halogen Impacts in a Varying Atmosphere) was initiated by a larger international consortium, in order to study the contribution of mostly naturally emitted halogenated very short-lived substances (VSLS) to the stratospheric inventory of ozone destroying halogens. Today the SHIVA consortium comprises about 120 full or associated partners coming from 19 institutions in 9 countries.

SHIVA’s scientific objectives infer from past research that mostly brominated and less likely iodinated VSLS, predominately emitted from biologically active surface waters of the global oceans, are eventually significantly contributing to the halogen load of the global stratosphere. Moreover, theoretical studies revealed that only the combination of sufficiently strong VSLS sources together with efficient vertical atmospheric transport would support a relevant contribution of VSLS to the stratospheric halogen burden. Both conditions are likely to be met in the western Pacific during the wet season (November to March). Since details of the relevant processes and their relevance for stratospheric ozone are yet largely unexplored, four major objectives of EU-SHIVA were identified, namely investigations of:

  1. The oceanic emission strengths of a suite of halogenated VSLS
  2. The atmospheric transport and transformation of the halogenated VSLS
  3. The past, present and likely future trend of the total stratospheric halogen burden
  4. The impact of long and short-lived halogenated trace gases and their inorganic product gases for past, present and future ozone within the upper troposphere, TTL and global stratosphere

Synopsis

The special ACP-AMT-BG-OS SI is intended to cover the research performed within the EU project SHIVA and related undertakings. Contributing manuscripts may cover investigations of halogenated VSLS emissions from marine micro- and macro algae, to their atmospheric transport and transformation as well as impacts of VSLS for global ozone studied in the laboratory, field and by theoretical models.

Changes in the vertical distribution of ozone – the SI2N report (ACP/AMT/ESSD Inter-Journal SI)

  • Guest Editors: P. K. Bhartia, N. Harris, M. Van Roozendael, M. Weber, R. Eckman, D. Loyola, J. Urban, C. von Savigny, M. Dameris, and S. Godin-Beekmann
  • Timeline: 01 Sep 2012 – 30 Sep 2014

In early 2011, a joint initiative was started under the auspices of SPARC, the International Ozone Commission (IO3C), the ozone focus area of the Integrated Global Atmospheric Chemistry Observations (IGACO-O3) programme, and the Network for Detection of Atmospheric Composition Change (NDACC). To aid digestion, an acronym of acronyms, SI2N, was adopted. Reports on the two workshops were published in SPARC Newsletters 37 and 39 (Harris et al., 2011, 2012 – http://www.sparc-climate.org/publications/). The main objective of SI2N is to assess and extend the current knowledge and understanding of measurements of the vertical distribution of ozone, with the aim of providing input to the next WMO/UNEP Scientific Assessment of Ozone Depletion anticipated for 2014. It is effectively a follow-up of the SPARC/IOC/GAW Ozone Profile Assessment (http://www.sparc-climate.org/publications/).

Guidelines for submissions:

  • Anything which was or could have been considered for the last Ozone Assessment will not be included.
  • Papers published prior to 2011 will be assessed using the following criteria.
  • The content of the paper must still be valid and not superceded by more recent work.
  • Datasets or technical advances (e.g. algorithm developments) will be looked on more favourably than interpretative papers such as trend analyses (since we assume they will updated if not by the same group.)
  • Comparisons with model data or use in model runs can be included as long as they are using current datasets that will be used in SI2N.
  • If a paper can be reasonably updated, then that is the preferable option.

Interactions between climate change and the Cryosphere: SVALI, DEFROST, CRAICC (2012-2016) (TC/ACP/BG Inter-Journal SI)

  • Guest Editors: J. Bäck, M. Bilde, M. Boy, T. R. Christensen, J. O. Hagen, M. Hansson, H. Järvinen, I. Jónsdóttir, M. Kulmala, T. Laurila, A. Stohl, H. Skov, A. Massling, M. Glasius, and S. M. Noe
  • Timeline: 19 Jun 2012 – 31 Dec 2016

SAPUSS: Solving aerosol problems by using synergistic strategies in the west Mediterranean basin

  • Guest Editors: A. S. H. Prevot, R. M. Harrison, S. Decesari, and R. Vecchi
  • Timeline: 01 Jun 2012 – 01 Jun 2015

Compared to other European regions, the metropolitan area of Barcelona sees relatively high particulate matter due to high anthropogenic emissions, a dry and warm Mediterranean climate and low dispersive conditions due to a unique topographical situation. During the autumn of 2010, the SAPUSS experiment took place, involving measurements of aerosols with multiple techniques occurring simultaneously in order to deduce point source characteristics and to understand the atmospheric processes responsible for their modifications. The unique approach is the large variety of instrumentations deployed simultaneously in a number of monitoring sites used including: a main traffic road, two urban background sites, a regional background site and two towers within the city (150 m and 545 m above sea level, 150 m and 80 m above ground, respectively). The purpose of this issue is to contribute to the advancement of our understanding of the sources and the evolution of aerosols in the atmosphere. This integrated study would also be of interest for other similar sites worldwide.

Ice-Atmosphere-Ocean interactions in the Arctic Ocean during IPY: the Damocles project (ACP/TC/OS Inter-Journal SI)

  • Guest Editors: O. Persson, T. Garrett, K. Dethloff, H. Eicken, J. M. Huthnance, and K. J. Heywood
  • Timeline: 14 Nov 2011 – 31 Dec 2013

Developing Arctic Modelling and Observing Capabilities for Long-term Environmental Studies (DAMOCLES) was the flagship EU project for the IPY. It concerned 47 partners from about 10 European Countries and triggered an active international scientific cooperation with Russia, China, Japan and the USA. At the time the DAMOCLES contract ended about one year ago, more than 150 scientific papers appeared in peer-reviewed publications under DAMOCLES. There are more publications to come as evidenced during the final General Assembly of Damocles in Tromsø, Norway in May 2010. During this final GA it was agreed and decided that DAMOCLES should find an appropriate scientific journal to release an important set of publications based on 6 synthetic papers and up to 30 topical papers. After some investigation it was decided to contact the European Geosciences Union Copernicus Publications to check the adequacy for submitting Damocles results dedicated to Ocean, Atmosphere and Sea Ice sciences in three Copernicus relevant journals: Atmospheric Chemistry and Physics (ACP), The Cryosphere (TC) and Ocean Science (OS).

Quantifying the impact of Boreal fires on tropospheric oxidants over the Atlantic using aircraft and satellites (BORTAS)

  • Guest Editors: S. Matthiesen, B. N. Duncan, P. Monks, and R. MacKenzie
  • Timeline: 27 Oct 2011 – 31 Dec 2014

The special issue publishes results from the BORTAS aircraft campaign in summer 2011 and related ground-based and space-borne measurement studies in 2010 and 2011. The overarching goal of BORTAS is to investigate the connection between the composition and the distribution of boreal biomass burning outflow, ozone production and loss within the outflow, and the resulting perturbation to oxidant chemistry in the troposphere. In July 2011, the FAAM146 research aircraft was used to sample the outflow from boreal fires over the Western boundary of the North Atlantic. These aircraft-based measurements were complemented by satellite data and a range of ground-based measurements.

The data obtained in the BORTAS campaign are used to:

  • describe observed chemistry within plumes, with particular attention to the NOy and organic chemistry;
  • derive a reduced chemical mechanism from the Master Chemical Mechanism (MCM), informed by the measurements, suitable for use in a global chemical transport model to reproduce observed chemistry within the plumes;
  • quantify the impact of boreal forest fires on oxidant chemistry over the temperate and subtropical Atlantic using a nested 3-D chemistry transport model, driven by assimilated field measurements and the reduced chemical mechanism; and
  • detect, validate and quantify the impact of boreal biomass burning on global tropospheric composition using data from space-borne sensors.

HCCT-2010: a complex ground-based experiment on aerosol-cloud interaction

  • Guest Editors: G. McFiggans, M. C. Facchini, C. George, and H. Herrmann
  • Timeline: 25 Oct 2011 – 30 Jun 2015

Carbonaceous Aerosols and Radiative Effects Study (CARES)

  • Guest Editors: D. J. Cziczo, T. Bond, G. McFiggans, and J. A. Thornton
  • Timeline: 08 Sep 2011 – 31 Dec 2015

The Pan European Gas-Aerosols Climate Interaction Study (PEGASOS)

  • Guest Editors: A. Laaksonen, E. Nemitz, U. Baltensperger, N. Mihalopoulos, and A. Hofzumahaus
  • Timeline: 04 Aug 2011 – 31 Aug 2015

The Pan European Gas AeroSOls-climate interaction Study (PEGASOS) European large scale integrating project brings together most of the leading European research groups, with state of the art observational and modeling facilities to:

  1. Quantify the magnitude of regional to global feedbacks between atmospheric chemistry and a changing climate and to reduce the corresponding uncertainty of the major ones.
  2. Identify mitigation strategies and policies to improve air quality while limiting their impact on climate change.

The project will combine development of anthropogenic and biogenic emission inventories, laboratory studies in some of the premier European smog chamber facilities, field measurements over Europe using a Zeppelin combined with mobile and fixed ground platforms, air quality and climate models, and policy analysis to achieve its objectives.

The CERN CLOUD experiment (ACP/AMT Inter-Journal SI)

  • Guest Editors: V.-M. Kerminen, J. H. Seinfeld, N. M. Donahue, K. Carslaw, and J. Abbatt
  • Timeline: 20 Jun 2011 – 31 Jul 2016

The SI will include papers on the experimental, theoretical and modelling results related to the CERN CLOUD experiment. The scientific focus of the experiment is to make fundamental measurements of aerosol nucleation under highly controlled laboratory conditions, including the effects of natural and synthetic cosmic rays. There were two campaigns of a month long: the first (2010) focused on inorganic aerosols and cosmic ray influences (NH3/H2SO4). The second campaign (June 2011) focuses on organic impacts on nucleation. There are also detailed modelling studies, plus papers on parameterisation development and global model applications.

BEACHON Rocky Mountain Organic Carbon Study (ROCS) and Rocky Mountain Biogenic Aerosol Study (RoMBAS)

  • Guest Editors: R. Holzinger, J. Rinne, A. Laaksonen, and A. Nenes
  • Timeline: 07 Jun 2011 – 31 Dec 2013

The Earth system is undergoing extensive change, with important implications for human health, resource management, ecosystem services and the environment. The ability to predict these changes and their impacts on time scales of months to a decade is becoming increasingly important. Key to improving the predictability of Earth system behavior over these time scales is an improved understanding of the coupling between water, energy and biogeochemical cycles in a multi-scale modeling framework. Robust predictions at these time scales require coordinated modeling, observations and process studies that explicitly address the coupled water, energy and biogeochemical cycles at multiple temporal and spatial scales. The BEACHON (Biosphere-atmosphere-hydrosphere-interactions of Energy, Aerosols, Carbon, Organics, and Nitrogen) project initiated two complementary field studies in a ponderosa pine woodland to enhance understanding of the roles of biogenic volatile organic compounds (BVOC), aerosols, nitrogen trace gases and oxidants in linking and regulating the carbon and water cycles. The BEACHON-ROCS (Rocky mountain Organic Carbon Study) was conducted in summer 2010 and was focused on understanding BVOC oxidation and the impact on atmospheric oxidants. The BEACHON-RoMBAS (Rocky Mountain Biogenic Aerosol Study) will be conducted in summer 2011 and will be focused on understanding the formation, growth and properties of biogenic organic aerosol. This special issue will highlight field and modeling investigations associated with the BEACHON ROCS and ROMBAS studies.

Integrated Land Ecosystem-Atmosphere Processes Study (iLEAPS) (ACP/BG Inter-Journal SI)

  • Guest Editors: A.-B. Guenther, P. Artaxo, L. Ganzeveld, H. P. Schmid, M. Kulmala, A. Neftel, A. Arneth, J. Pongratz, N. Saigusa, S. Seneviratne, S. M. Noe
  • Timeline: 01 Jun 2011 – 31 Dec 2015

iLEAPS is the land-atmosphere core project of the International Geosphere-Biosphere Programme (IGBP). The scientific goal of iLEAPS is to provide understanding how interacting physical, chemical and biological processes transport and transform energy and matter through the land-atmosphere interface. Atmospheric Chemistry and Physics (ACP) and Biogeosciences (BG) have opened a joint special issue on iLEAPS-related science, and you are welcome to contribute by sending manuscripts on land-atmosphere interactions to this joint issue via either ACP or BG.

Megapoli-Paris 2009/2010 campaign

  • Guest Editors: A. Baklanov, M. Beekmann, J.-L. Jaffrezo, J.-L. Jimenez, C. Reeves, and R. Vautard
  • Timeline: 04 Mar 2011 – 31 Dec 2014

The MEGAPOLI PARIS campaigns in summer 2009 and in winter 2010 aimed at better quantifying sources of primary and secondary aerosol in and around a large agglomeration and to document their evolution in the megacity plume. A focus was put on carbonaceous aerosol, where uncertainties are major. As related issues, also gas phase photochemistry and the evolution of dynamical conditions during the campaign were addressed. Analysis of experimental data and modelling studies are solicited. Papers on timescales beyond the campaign, but dealing with this target region, are also welcome.

Atmospheric impacts of Eastern Asia megacities

  • Guest Editors: A. B. Guenther, C. H. Song, X. Tie, T. Wang, and K. Schaefer
  • Timeline: 01 Nov 2010 – 30 Jun 2014

Eastern Asia has a large number of megacities including many regions of ongoing rapid urbanization with the potential to produce new megacities in the coming decades. Recent field experiments and associated modeling studies in eastern China, Korea and Japan have demonstrated that human activities in Eastern Asia megacities have had dramatic impacts on atmospheric chemistry and physics in this region which have important implications for air quality and climate. These studies are characterizing emission and ambient distributions, atmospheric chemical processing, aerosol and oxidant production and growth, urban/rural interactions, and long range transport. It is widely recognized that individual megacities can influence other regions and effective air pollution control strategies in any of these locations requires a better understanding of emissions, chemical processing and interactions within the entire region. This special issue will highlight recent field studies and associated modeling investigations that address scientific questions associated with the impact of Eastern Asia megacities on atmospheric chemistry and physics. Papers submitted to this special issue will focus on Eastern Asia megacity studies of chemical emission and deposition, atmospheric chemical composition and processing, impacts on weather and climate, regional transport and related topics. This will include investigations conducted within specific megacities of Korea, Japan and Eastern China as well as larger scale studies linking individual Eastern Asia megacities to the regional and global environment.

Chemistry, microphysics and dynamics of the polar stratosphere: ozone loss and climate-chemistry interactions

  • Guest Editors: D. Knopf, R. Mueller, F. Khosrawi, and M. von Hobe
  • Timeline: 08 Oct 2010 – 01 Jul 2014

The special issue "Chemistry, microphysics and dynamics of the polar stratosphere: ozone loss and climate-chemistry interactions" was motivated by the EU-project RECONCILE (Reconciliation of essential process parameters for an enhanced predictability of arctic stratospheric ozone loss and its climate interactions) and covers all aspects of polar stratospheric ozone, polar stratospheric clouds, and other dynamical and chemical processes relevant in the polar stratosphere. It is open for contributions on chemistry, microphysics, radiation, dynamics, small and large scale transport phenomena, mesoscale processes and polar-midlatitudinal exchange. We particularly encourage contributions on ClOx/BrOx chemistry, chlorine activation, NAT nucleation mechanisms, on transport and mixing of processed air to lower latitudes, and on polar aspects of ozone/climate interactions, including empirical analyses and coupled chemistry/climate model results and coupling between tropospheric climate patterns and high latitude ozone.

Arctic Summer Cloud Ocean Study (ASCOS) (ACP/OS/AMT Inter-Journal SI)

  • Guest Editors: J. W. Bottenheim, W. M. Drennan, M. Tjernström, C. Leck, I. Brooks, G. de Leeuw, E. Swietlicki, and A. Hansel
  • Timeline: 08 Jun 2010 – 31 Dec 2013

Clouds constitute one of the major uncertainties in understanding the climate system and changes in the clouds as a consequence of global climate change is not well constrained by observations. This is particularly true in the Arctic, where clouds constitute the larges single factor affecting the surface energy balance, and therefore on melting and freezing of sea ice.

ASCOS is a highly interdisciplinary project with a major field experiment in the central Arctic Ocean during August/September 2008, approximately at 87N and 7W, deployed on the Swedish icebreaker Oden as a part of the International Polar Year (IPY). The ASCOS main target is to study the formation and life cycle of Arctic summer low-level clouds. To achieve this we deployed instruments for process level observations in a column from 0.5 km in to the ocean, through the ocean/ice surface up through the atmospheric boundary layer, and to the top of the troposphere (also see http://www.ascos.se). ASCOS measurements range from in-situ observations, to surface-based remote sensing, to airborne observations. The most intense observations were during a 3-week ice drift, starting with typical Arctic summer melt conditions and ending with the initial freeze-up of autumn. ASCOS was also coordinated with the Arctic Mechanisms of Interaction between the Surface and Atmosphere (AMISA) project, providing airborne measurements from the NASA DC8 research aircraft in the vicinity of the ASCOS column, flying in from Kiruna, Sweden.

The science team on Oden consisted of 33 researchers from 14 institutes in 11 different countries; many more are involved in analysis and associated modelling studies. This, and the experimental set-up, makes ASCOS the most extensive atmosphere-oriented experiment in the central Arctic for the entire IPY. ASCOS science cuts across several disciplines, with links to microbial life in ocean and ice, atmospheric chemistr

Haze in China (HaChi 2009-2010)

  • Guest Editors: V.-M. Kerminen, D. Covert , and E. Swietlicki
  • Timeline: 01 Jun 2010 – 31 Dec 2014

 

VAMOS Ocean-Cloud-Atmosphere-Land Study (VOCALS) (ACP/OS Inter-Journal SI)

  • Guest Editors: C. R. Mechoso, B. Albrecht, H. Coe, C. Fairall, G. Feingold, R. Garreaud, A. Hall, R. Weller, R. Wood, C. Twohy, and M. Alonso Balmaseda
  • Timeline: 19 Nov 2009 – 31 Oct 2013

The VAMOS Ocean-Cloud-Atmosphere-Land Study (VOCALS) is an international CLIVAR/VAMOS program designed to develop and promote scientific activities leading to improved understanding, model simulations, and predictions of the southeastern Pacific (SEP) coupled ocean-atmosphere-land system, on diurnal to interannual timescales. The major components of VOCALS are a modeling program with a model hierarchy ranging from the local to global scales, a major international field program (The VOCALS Regional Experiment, VOCALS-REx), and a suite of extended observations from regular research cruises, instrumented moorings, and satellites. The combination of intensive field measurements, long-term observations, and modeling will provide important insights that will directly benefit climate modeling. Some 200 scientists from 40 institutions in 8 nations are currently participating in VOCALS. Details of the three main components of VOCALS are given below.

The SEP climate is a tightly coupled system involving poorly understood interactions between clouds, aerosols, marine boundary layer (MBL) processes, upper ocean dynamics and thermodynamics, coastal currents and upwelling, large-scale subsidence, and regional diurnal circulations, to the west of the Andes mountain range.

Further information on VOCALS can be found on the program website http://www.eol.ucar.edu/projects/vocals

Program of Regional Integrated Experiments on Air Quality over the Pearl River Delta (PRIDE-PRD)

  • Guest Editors: A. Hofzumahaus, M. Hu, S. C. Liu, and A. Wiedensohler
  • Timeline: 16 Mar 2009 – 01 Jan 2014