Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
ACP cover
Executive editors:
Ulrich
 
Pöschl
,
Ken Carslaw, Thomas Koop, Rolf Sander & William Thomas Sturges

Atmospheric Chemistry and Physics (ACP) is an international scientific journal dedicated to the publication and public discussion of high-quality studies investigating the Earth's atmosphere and the underlying chemical and physical processes. It covers the altitude range from the land and ocean surface up to the turbopause, including the troposphere, stratosphere, and mesosphere.

The main subject areas comprise atmospheric modelling, field measurements, remote sensing, and laboratory studies of gases, aerosols, clouds and precipitation, isotopes, radiation, dynamics, biosphere interactions, and hydrosphere interactions (for details see journal subject areas). The journal scope is focused on studies with general implications for atmospheric science rather than investigations that are primarily of local or technical interest.

Recent articles


Highlight articles

This paper presents an analysis of unusually long and continuous time series (82 yrs) of visibility in a urban environment, namely Athens. Visibility is shown to be a good proxy to follow the evolution of particulate pollution in the long-term in the absence of direct aerosol measurements that can be compared only over the most recent period. The paper shows interesting evolutions related to the socio-economic local history and, by comparison to a distant island site, demonstrates the major control of large-scale conditions on the aerosol load even in a large and densely populated urban environment.

D. Founda, S. Kazadzis, N. Mihalopoulos, E. Gerasopoulos, M. Lianou, and P. I. Raptis

Using a coupled tropospheric chemistry-aerosol microphysics model this research paper investigates the effect of variations in aviation fuel sulfur content (FSC) on surface PM2.5 concentrations, increases in aviation-induced premature mortalities, low-level cloud condensation nuclei and radiative effect.

When investigating the climatic impact of variations in FSC the ozone direct radiative effect, aerosol direct radiative effect and aerosol cloud albedo effect are quantified.

Z. Z. Kapadia, D. V. Spracklen, S. R. Arnold, D. J. Borman, G. W. Mann, K. J. Pringle, S. A. Monks, C. L. Reddington, F. Benduhn, A. Rap, C. E. Scott, E. W. Butt, and M. Yoshioka

HF, the dominant stratospheric fluorine reservoir, results from the atmospheric degradation of anthropogenic species such as CFCs, HCFCs, and HFCs. All are strong greenhouse gases, and CFCs and HCFCs deplete stratospheric ozone. We report the comparison of HF global distributions and trends measured by the ACE-FTS and HALOE satellite instruments with the output of SLIMCAT, a chemical transport model. The global HF trends reveal a slowing down in the rate of increase of HF since the 1990s.

J. J. Harrison, M. P. Chipperfield, C. D. Boone, S. S. Dhomse, P. F. Bernath, L. Froidevaux, J. Anderson, and J. Russell III

Three 30-year simulations of past atmospheric composition changes were performed using different anthropogenic emissions of pollutants accounting or not for the applied air quality legislation and accounting for the year–to–year observed climate and natural emissions variability. The actual benefit of applied legislation along with technological advances is higher than what is usually calculated by a simple comparison of today's atmosphere against a constant anthropogenic emissions simulation.

N. Daskalakis, K. Tsigaridis, S. Myriokefalitakis, G. S. Fanourgakis, and M. Kanakidou

We present a case study focused on an aerosol growth event observed in the Canadian High Arctic during summer. Using measurements of aerosol chemical and physical properties we find evidence for aerosol growth into cloud condensation nuclei-active sizes, through marine-influenced secondary organic aerosol formation. Understanding the mechanisms that control the formation and growth of aerosol is crucial for our ability to predict cloud properties, and therefore radiative balance and climate.

M. D. Willis, J. Burkart, J. L. Thomas, F. Köllner, J. Schneider, H. Bozem, P. M. Hoor, A. A. Aliabadi, H. Schulz, A. B. Herber, W. R. Leaitch, and J. P. D. Abbatt

News

Geographical distribution of views now available in journal ALMs

08 Sep 2016

Copernicus Publications has extended the article level metrics (ALMs) by showing the geographical distribution of views. This information is available for articles published after 3 August 2016.

Institutional agreement for ACP authors affiliated with the Leibniz Association

01 Sep 2016

Copernicus Publications and the Leibniz Association have agreed on a central billing of article processing charges (APCs) to facilitate the publication procedure for authors. So far three Leibniz institutes are participating in this agreement.

Institutional agreement for ACP authors affiliated with the Leibniz Universität Hannover

11 Jan 2016

Copernicus Publications and the Technische Informationsbibliothek (TIB) in Hanover, Germany have signed an agreement on central billing of article processing charges.

Publications Copernicus