Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
ACP cover
Executive editors:
Ken Carslaw, Maria Cristina Facchini, Thomas Koop & Rolf Sander

Atmospheric Chemistry and Physics (ACP) is an international scientific journal dedicated to the publication and public discussion of high-quality studies investigating the Earth's atmosphere and the underlying chemical and physical processes. It covers the altitude range from the land and ocean surface up to the turbopause, including the troposphere, stratosphere, and mesosphere.

The main subject areas comprise atmospheric modelling, field measurements, remote sensing, and laboratory studies of gases, aerosols, clouds and precipitation, isotopes, radiation, dynamics, biosphere interactions, and hydrosphere interactions (for details see journal subject areas). The journal scope is focused on studies with general implications for atmospheric science rather than investigations that are primarily of local or technical interest.

Recent articles

Highlight articles

We analyse simulations from the Chemistry-Climate Model Initiative (CCMI) to estimate the return dates of the stratospheric ozone layer from depletion by anthropogenic chlorine and bromine. The simulations from 20 models project that global column ozone will return to 1980 values in 2047 (uncertainty range 2042–2052). Return dates in other regions vary depending on factors related to climate change and importance of chlorine and bromine. Column ozone in the tropics may continue to decline.

Sandip S. Dhomse, Douglas Kinnison, Martyn P. Chipperfield, Ross J. Salawitch, Irene Cionni, Michaela I. Hegglin, N. Luke Abraham, Hideharu Akiyoshi, Alex T. Archibald, Ewa M. Bednarz, Slimane Bekki, Peter Braesicke, Neal Butchart, Martin Dameris, Makoto Deushi, Stacey Frith, Steven C. Hardiman, Birgit Hassler, Larry W. Horowitz, Rong-Ming Hu, Patrick Jöckel, Beatrice Josse, Oliver Kirner, Stefanie Kremser, Ulrike Langematz, Jared Lewis, Marion Marchand, Meiyun Lin, Eva Mancini, Virginie Marécal, Martine Michou, Olaf Morgenstern, Fiona M. O'Connor, Luke Oman, Giovanni Pitari, David A. Plummer, John A. Pyle, Laura E. Revell, Eugene Rozanov, Robyn Schofield, Andrea Stenke, Kane Stone, Kengo Sudo, Simone Tilmes, Daniele Visioni, Yousuke Yamashita, and Guang Zeng

A major phenomenon in the stratosphere is the Quasi Biennial Oscillation (QBO). Although a feature of the equatorial stratosphere, its influence extends to surface weather at both equatorial and mid latitudes. Improved knowledge of mechanisms of influence should help to improve weather forecasts. In this paper, QBO impacts at the surface are characterized and dominant mechanisms explored. Three pathways are identified, referred to as the tropical, subtropical and polar routes.

Lesley J. Gray, James A. Anstey, Yoshio Kawatani, Hua Lu, Scott Osprey, and Verena Schenzinger

2017 marks the 30th anniversary of the Montreal Protocol, which was implemented to protect the stratospheric ozone layer from the harmful effects of synthetic ozone depleting substances. Since the late 1990s atmospheric concentrations of these species have begun to decline, and as a result ozone concentrations are expected to increase. In this study we use an ensemble of chemistry-climate simulations to investigate recent ozone trends and search for early signs of ozone recovery.

James Keeble, Hannah Brown, N. Luke Abraham, Neil R. P. Harris, and John A. Pyle

A numerical model also used for operational weather forecast was applied to investigate the impact of contrails and contrail cirrus on the radiative fluxes at the earth's surface. Accounting for contrails produced by aircraft enables the model to simulate high clouds that are otherwise missing. In a case study, we find that the effect of these extra clouds is to reduce the incoming shortwave radiation at the surface as well as the production of photovoltaic power by up to 10 %.

Simon Gruber, Simon Unterstrasser, Jan Bechtold, Heike Vogel, Martin Jung, Henry Pak, and Bernhard Vogel

A new passive air sampler for gaseous mercury was tested at 20 sites on four continents. These sites have in common that they use the state-of-the-art active air sampling technique for gaseous mercury on a continuous basis and therefore allow for an evaluation and calibration of the passive sampler. The sampler proved to work exceptionally well, with a precision and accuracy on par with the active instrument and better than what has previously been achieved with passive samplers.

David S. McLagan, Carl P. J. Mitchell, Alexandra Steffen, Hayley Hung, Cecilia Shin, Geoff W. Stupple, Mark L. Olson, Winston T. Luke, Paul Kelley, Dean Howard, Grant C. Edwards, Peter F. Nelson, Hang Xiao, Guey-Rong Sheu, Annekatrin Dreyer, Haiyong Huang, Batual Abdul Hussain, Ying D. Lei, Ilana Tavshunsky, and Frank Wania

Detecting trends in short data sets of stratospheric molecules is difficult because of variability due to dynamical fluctuations. We suggest that one way around this difficulty is using the measurements of one molecule to remove dynamical variability from the measurements of another molecule. We illustrate this using Aura MLS measurements of N2O to help us sort out issues in the determination of trends in HCl. This shows that HCl is decreasing throughout the middle stratosphere as expected.

Richard S. Stolarski, Anne R. Douglass, and Susan E. Strahan

Extended agreement with the Leibniz Association 03 May 2018

As of 1 May 2018 the centralized payment of article processing charges (APCs) with the Leibniz Association has been extended to 53 Leibniz Institutions participating in the Leibniz Association's Open Access Publishing Fund.

Press Release: Ozone at lower latitudes is not recovering, despite Antarctic ozone hole healing 06 Feb 2018

The ozone layer – which protects us from harmful ultraviolet radiation – is recovering at the poles, but unexpected decreases in part of the atmosphere may be preventing recovery at lower latitudes, new research has found. The new result, published today in ACP, finds that the bottom part of the ozone layer at more populated latitudes is not recovering.

Thanks to Bill Sturges and welcome to Cristina Facchini as executive editors of ACP 17 Jan 2018

After more than 16 years of serving the scientific community of Atmospheric Chemistry and Physics (ACP) with great dedication and success, William T. (Bill) Sturges has resigned from the executive committee that coordinates the ACP editorial board.

Publications Copernicus