ACP cover
Executive editors: Ulrich Pöschl, Ken Carslaw, Barbara Ervens & Thomas Koop

Atmospheric Chemistry and Physics (ACP) is a not-for-profit international scientific journal dedicated to the publication and public discussion of high-quality studies investigating the Earth's atmosphere and the underlying chemical and physical processes. It covers the altitude range from the land and ocean surface up to the turbopause, including the troposphere, stratosphere, and mesosphere.

The main subject areas comprise atmospheric modelling, field measurements, remote sensing, and laboratory studies of gases, aerosols, clouds and precipitation, isotopes, radiation, dynamics, biosphere interactions, and hydrosphere interactions (for details see journal subject areas). The journal scope is focused on studies with general implications for atmospheric science rather than investigations that are primarily of local or technical interest.

Dear colleagues, due to the current coronavirus situation, we are experiencing unusual challenges and delays in manuscript handling and reviewing, for which we would like to ask for your understanding.

Many thanks and best wishes, the ACP executive editors on behalf of the editorial board

IF value: 6.133
IF6.133
IF 5-year value: 6.546
IF 5-year6.546
CiteScore value: 10.1
CiteScore10.1
h5-index value: 93
h5-index93
Highlight articles
15 Oct 2021
How alkaline compounds control atmospheric aerosol particle acidity
Vlassis A. Karydis, Alexandra P. Tsimpidi, Andrea Pozzer, and Jos Lelieveld
Atmos. Chem. Phys., 21, 14983–15001, https://doi.org/10.5194/acp-21-14983-2021,https://doi.org/10.5194/acp-21-14983-2021, 2021
Short summary
13 Oct 2021
Aerosol–cloud interactions: the representation of heterogeneous ice activation in cloud models
Bernd Kärcher and Claudia Marcolli
Atmos. Chem. Phys., 21, 15213–15220, https://doi.org/10.5194/acp-21-15213-2021,https://doi.org/10.5194/acp-21-15213-2021, 2021
Short summary
08 Oct 2021
Ambient aerosol properties in the remote atmosphere from global-scale in situ measurements
Charles A. Brock, Karl D. Froyd, Maximilian Dollner, Christina J. Williamson, Gregory Schill, Daniel M. Murphy, Nicholas J. Wagner, Agnieszka Kupc, Jose L. Jimenez, Pedro Campuzano-Jost, Benjamin A. Nault, Jason C. Schroder, Douglas A. Day, Derek J. Price, Bernadett Weinzierl, Joshua P. Schwarz, Joseph M. Katich, Siyuan Wang, Linghan Zeng, Rodney Weber, Jack Dibb, Eric Scheuer, Glenn S. Diskin, Joshua P. DiGangi, ThaoPaul​​​​​​​ Bui, Jonathan M. Dean-Day, Chelsea R. Thompson, Jeff Peischl, Thomas B. Ryerson, Ilann Bourgeois, Bruce C. Daube, Róisín Commane, and Steven C. Wofsy
Atmos. Chem. Phys., 21, 15023–15063, https://doi.org/10.5194/acp-21-15023-2021,https://doi.org/10.5194/acp-21-15023-2021, 2021
Short summary
27 Sep 2021
The driving factors of new particle formation and growth in the polluted boundary layer
Mao Xiao, Christopher R. Hoyle, Lubna Dada, Dominik Stolzenburg, Andreas Kürten, Mingyi Wang, Houssni Lamkaddam, Olga Garmash, Bernhard Mentler, Ugo Molteni, Andrea Baccarini, Mario Simon, Xu-Cheng He, Katrianne Lehtipalo, Lauri R. Ahonen, Rima Baalbaki, Paulus S. Bauer, Lisa Beck, David Bell, Federico Bianchi, Sophia Brilke, Dexian Chen, Randall Chiu, António Dias, Jonathan Duplissy, Henning Finkenzeller, Hamish Gordon, Victoria Hofbauer, Changhyuk Kim, Theodore K. Koenig, Janne Lampilahti, Chuan Ping Lee, Zijun Li, Huajun Mai, Vladimir Makhmutov, Hanna E. Manninen, Ruby Marten, Serge Mathot, Roy L. Mauldin, Wei Nie, Antti Onnela, Eva Partoll, Tuukka Petäjä, Joschka Pfeifer, Veronika Pospisilova, Lauriane L. J. Quéléver, Matti Rissanen, Siegfried Schobesberger, Simone Schuchmann, Yuri Stozhkov, Christian Tauber, Yee Jun Tham, António Tomé, Miguel Vazquez-Pufleau, Andrea C. Wagner, Robert Wagner, Yonghong Wang, Lena Weitz, Daniela Wimmer, Yusheng Wu, Chao Yan, Penglin Ye, Qing Ye, Qiaozhi Zha, Xueqin Zhou, Antonio Amorim, Ken Carslaw, Joachim Curtius, Armin Hansel, Rainer Volkamer, Paul M. Winkler, Richard C. Flagan, Markku Kulmala, Douglas R. Worsnop, Jasper Kirkby, Neil M. Donahue, Urs Baltensperger, Imad El Haddad, and Josef Dommen
Atmos. Chem. Phys., 21, 14275–14291, https://doi.org/10.5194/acp-21-14275-2021,https://doi.org/10.5194/acp-21-14275-2021, 2021
Short summary
16 Sep 2021
Heterogeneity and chemical reactivity of the remote troposphere defined by aircraft measurements
Hao Guo, Clare M. Flynn, Michael J. Prather, Sarah A. Strode, Stephen D. Steenrod, Louisa Emmons, Forrest Lacey, Jean-Francois Lamarque, Arlene M. Fiore, Gus Correa, Lee T. Murray, Glenn M. Wolfe, Jason M. St. Clair, Michelle Kim, John Crounse, Glenn Diskin, Joshua DiGangi, Bruce C. Daube, Roisin Commane, Kathryn McKain, Jeff Peischl, Thomas B. Ryerson, Chelsea Thompson, Thomas F. Hanisco, Donald Blake, Nicola J. Blake, Eric C. Apel, Rebecca S. Hornbrook, James W. Elkins, Eric J. Hintsa, Fred L. Moore, and Steven Wofsy
Atmos. Chem. Phys., 21, 13729–13746, https://doi.org/10.5194/acp-21-13729-2021,https://doi.org/10.5194/acp-21-13729-2021, 2021
Short summary
Recent papers
15 Oct 2021
How alkaline compounds control atmospheric aerosol particle acidity
Vlassis A. Karydis, Alexandra P. Tsimpidi, Andrea Pozzer, and Jos Lelieveld
Atmos. Chem. Phys., 21, 14983–15001, https://doi.org/10.5194/acp-21-14983-2021,https://doi.org/10.5194/acp-21-14983-2021, 2021
Short summary
15 Oct 2021
OMI-observed HCHO in Shanghai, China, during 2010–2019 and ozone sensitivity inferred by an improved HCHO ∕ NO2 ratio
Danran Li, Shanshan Wang, Ruibin Xue, Jian Zhu, Sanbao Zhang, Zhibin Sun, and Bin Zhou
Atmos. Chem. Phys., 21, 15447–15460, https://doi.org/10.5194/acp-21-15447-2021,https://doi.org/10.5194/acp-21-15447-2021, 2021
Short summary
15 Oct 2021
Organic and inorganic bromine measurements around the extratropical tropopause and lowermost stratosphere: insights into the transport pathways and total bromine
Meike K. Rotermund, Vera Bense, Martyn P. Chipperfield, Andreas Engel, Jens-Uwe Grooß, Peter Hoor, Tilman Hüneke, Timo Keber, Flora Kluge, Benjamin Schreiner, Tanja Schuck, Bärbel Vogel, Andreas Zahn, and Klaus Pfeilsticker
Atmos. Chem. Phys., 21, 15375–15407, https://doi.org/10.5194/acp-21-15375-2021,https://doi.org/10.5194/acp-21-15375-2021, 2021
Short summary
15 Oct 2021
Aerosol transport pathways and source attribution in China during the COVID-19 outbreak
Lili Ren, Yang Yang, Hailong Wang, Pinya Wang, Lei Chen, Jia Zhu, and Hong Liao
Atmos. Chem. Phys., 21, 15431–15445, https://doi.org/10.5194/acp-21-15431-2021,https://doi.org/10.5194/acp-21-15431-2021, 2021
Short summary
15 Oct 2021
Investigation and amelioration of long-term instrumental drifts in water vapor and nitrous oxide measurements from the Aura Microwave Limb Sounder (MLS) and their implications for studies of variability and trends
Nathaniel J. Livesey, William G. Read, Lucien Froidevaux, Alyn Lambert, Michelle L. Santee, Michael J. Schwartz, Luis F. Millán, Robert F. Jarnot, Paul A. Wagner, Dale F. Hurst, Kaley A. Walker, Patrick E. Sheese, and Gerald E. Nedoluha
Atmos. Chem. Phys., 21, 15409–15430, https://doi.org/10.5194/acp-21-15409-2021,https://doi.org/10.5194/acp-21-15409-2021, 2021
Short summary
Scheduled special issues
Sea2Cloud (ACP/OS inter-journal SI)
01 Oct 2021–31 Oct 2023 | ACP co-editors | Coordinators: Susannah Burrows and Maria Kanakidou | Karine Sellegri, Cliff Law, and Mike Harvey | Information
07 Jul 2021–31 Dec 2024 | ACP co-editors | Coordinators: Astrid Kiendler-Scharr and Stefania Gilardoni | Co-organizers: Paolo Laj and Giulia Saponaro | Information
20 May 2021–19 May 2023 | ACP co-editors | Coordinators: Jianzhong Ma and Neil Harris | Co-organizers: Jos Lelieveld and Christiane Voigt | Information
31 Mar 2021–31 Dec 2023 | ACP co-editors | Coordinators: Graham Feingold and Gordon McFiggans | Co-organizers: Simon Unterstrasser and Sylwester Arabas | Information
22 Feb 2021–31 Jan 2023 | ACP co-editors | Coordinators: Franziska Glassmeier and Timothy Garrett | Co-organizers: Silke Trömel and Johannes Quaas | Information
News
15 Oct 2021 New ACP Letter: How alkaline compounds control atmospheric aerosol particle acidity

Aerosol particle pH is well-buffered by alkaline compounds, notably NH3 and crustal elements. NH3 is found to supply remarkable buffering capacity on a global scale, from the polluted continents to the remote oceans.

15 Oct 2021 New ACP Letter: How alkaline compounds control atmospheric aerosol particle acidity

Aerosol particle pH is well-buffered by alkaline compounds, notably NH3 and crustal elements. NH3 is found to supply remarkable buffering capacity on a global scale, from the polluted continents to the remote oceans.

01 Oct 2021 First insights from new EGU author survey

In April 2021 the EGU Publications Committee launched the first author survey to routinely ask authors about their publishing experience in EGU journals, in order to learn more about how EGU and Copernicus can serve the scientific community with their publications. Over the last 6 months, 160 contact authors answered the survey representing about 10% of the papers published during this time. We are delighted about the positive feedback and thank all authors. Please read the full report.

01 Oct 2021 First insights from new EGU author survey

In April 2021 the EGU Publications Committee launched the first author survey to routinely ask authors about their publishing experience in EGU journals, in order to learn more about how EGU and Copernicus can serve the scientific community with their publications. Over the last 6 months, 160 contact authors answered the survey representing about 10% of the papers published during this time. We are delighted about the positive feedback and thank all authors. Please read the full report.

27 Sep 2021 New ACP Letter: The driving factors of new particle formation and growth in the polluted boundary layer

Experiments at CLOUD show that in polluted environments new particle formation (NPF) is largely driven by the formation of sulfuric acid-base clusters, stabilized by amines, high ammonia concentrations or lower temperatures.

27 Sep 2021 New ACP Letter: The driving factors of new particle formation and growth in the polluted boundary layer

Experiments at CLOUD show that in polluted environments new particle formation (NPF) is largely driven by the formation of sulfuric acid-base clusters, stabilized by amines, high ammonia concentrations or lower temperatures.