ACP cover
Executive editors: Ulrich Pöschl, Ken Carslaw, Barbara Ervens & Thomas Koop

Atmospheric Chemistry and Physics (ACP) is a not-for-profit international scientific journal dedicated to the publication and public discussion of high-quality studies investigating the Earth's atmosphere and the underlying chemical and physical processes. It covers the altitude range from the land and ocean surface up to the turbopause, including the troposphere, stratosphere, and mesosphere.

The main subject areas comprise atmospheric modelling, field measurements, remote sensing, and laboratory studies of gases, aerosols, clouds and precipitation, isotopes, radiation, dynamics, biosphere interactions, and hydrosphere interactions (for details see journal subject areas). The journal scope is focused on studies with general implications for atmospheric science rather than investigations that are primarily of local or technical interest.

Dear colleagues, due to the current coronavirus situation, we are experiencing unusual challenges and delays in manuscript handling and reviewing, for which we would like to ask for your understanding.

Many thanks and best wishes, the ACP executive editors on behalf of the editorial board

IF value: 5.414
IF5.414
IF 5-year value: 5.958
IF 5-year5.958
CiteScore value: 10.1
CiteScore10.1
h5-index value: 93
h5-index93
Recent papers
16 Jun 2021
Influence of weather situation on non-CO2 aviation climate effects: the REACT4C climate change functions
Christine Frömming, Volker Grewe, Sabine Brinkop, Patrick Jöckel, Amund S. Haslerud, Simon Rosanka, Jesper van Manen, and Sigrun Matthes
Atmos. Chem. Phys., 21, 9151–9172, https://doi.org/10.5194/acp-21-9151-2021,https://doi.org/10.5194/acp-21-9151-2021, 2021
Short summary
16 Jun 2021
Local evaporation controlled by regional atmospheric circulation in the Altiplano of the Atacama Desert
Felipe Lobos-Roco, Oscar Hartogensis, Jordi Vilà-Guerau de Arellano, Alberto de la Fuente, Ricardo Muñoz, José Rutllant, and Francisco Suárez
Atmos. Chem. Phys., 21, 9125–9150, https://doi.org/10.5194/acp-21-9125-2021,https://doi.org/10.5194/acp-21-9125-2021, 2021
Short summary
16 Jun 2021
A strong statistical link between aerosol indirect effects and the self-similarity of rainfall distributions
Kalli Furtado and Paul Field
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-443,https://doi.org/10.5194/acp-2021-443, 2021
Preprint under review for ACP (discussion: open, 0 comments)
Short summary
16 Jun 2021
Sources and nature of ice-nucleating particles in the free troposphere at Jungfraujoch in winter 2017
Larissa Lacher, Hans-Christian Clemen, Xiaoli Shen, Stephan Mertes, Martin Gysel-Beer, Alireza Moallemi, Martin Steinbacher, Stephan Henne, Harald Saathoff, Ottmar Möhler, Kristina Höhler, Thea Schiebel, Daniel Weber, Jann Schrod, Johannes Schneider, and Zamin A. Kanji
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-415,https://doi.org/10.5194/acp-2021-415, 2021
Preprint under review for ACP (discussion: open, 0 comments)
Short summary
16 Jun 2021
Influence of atmospheric in-cloud aqueous-phase chemistry on global simulation of SO2 in CESM2
Wendong Ge, Junfeng Liu, Kan Yi, Jiayu Xu, Yizhou Zhang, Xiurong Hu, Jianmin Ma, Xuejun Wang, Yi Wan, Jianying Hu, Zhaobin Zhang, Xilong Wang, and Shu Tao
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-406,https://doi.org/10.5194/acp-2021-406, 2021
Preprint under review for ACP (discussion: open, 0 comments)
Short summary
Highlight articles
11 May 2021
Captured cirrus ice particles in high definition
Nathan Magee, Katie Boaggio, Samantha Staskiewicz, Aaron Lynn, Xuanyi Zhao, Nicholas Tusay, Terance Schuh, Manisha Bandamede, Lucas Bancroft, David Connelly, Kevin Hurler, Bryan Miner, and Elissa Khoudary
Atmos. Chem. Phys., 21, 7171–7185, https://doi.org/10.5194/acp-21-7171-2021,https://doi.org/10.5194/acp-21-7171-2021, 2021
Short summary
10 May 2021
Smoke-charged vortices in the stratosphere generated by wildfires and their behaviour in both hemispheres: comparing Australia 2020 to Canada 2017
Hugo Lestrelin, Bernard Legras, Aurélien Podglajen, and Mikail Salihoglu
Atmos. Chem. Phys., 21, 7113–7134, https://doi.org/10.5194/acp-21-7113-2021,https://doi.org/10.5194/acp-21-7113-2021, 2021
Short summary
04 May 2021
Heterogeneous interactions between SO2 and organic peroxides in submicron aerosol
Shunyao Wang, Tengyu Liu, Jinmyung Jang, Jonathan P. D. Abbatt, and Arthur W. H. Chan
Atmos. Chem. Phys., 21, 6647–6661, https://doi.org/10.5194/acp-21-6647-2021,https://doi.org/10.5194/acp-21-6647-2021, 2021
Short summary
26 Apr 2021
Observing the timescales of aerosol–cloud interactions in snapshot satellite images
Edward Gryspeerdt, Tom Goren, and Tristan W. P. Smith
Atmos. Chem. Phys., 21, 6093–6109, https://doi.org/10.5194/acp-21-6093-2021,https://doi.org/10.5194/acp-21-6093-2021, 2021
Short summary
14 Apr 2021
Uncertainties in the Emissions Database for Global Atmospheric Research (EDGAR) emission inventory of greenhouse gases
Efisio Solazzo, Monica Crippa, Diego Guizzardi, Marilena Muntean, Margarita Choulga, and Greet Janssens-Maenhout
Atmos. Chem. Phys., 21, 5655–5683, https://doi.org/10.5194/acp-21-5655-2021,https://doi.org/10.5194/acp-21-5655-2021, 2021
Short summary
Scheduled special issues
20 May 2021–19 May 2023 | ACP co-editors | Coordinators: Jianzhong Ma and Neil Harris | Co-organizers: Jos Lelieveld and Christiane Voigt | Information
31 Mar 2021–31 Dec 2023 | ACP co-editors | Coordinators: Graham Feingold and Gordon McFiggans | Co-organizers: Simon Unterstrasser and Sylwester Arabas | Information
22 Feb 2021–31 Jan 2023 | ACP co-editors | Coordinators: Franziska Glassmeier and Timothy Garrett | Co-organizers: Silke Trömel and Johannes Quaas | Information
01 Feb 2021–31 Dec 2022 | ACP co-editors | Coordinators: Corinna Hoose and Steven Brown | Co-organizers: Jeffrey S. Reid, Susan van den Heever, Luke Ziemba, and Larry Di Girolamo | Information
01 Nov 2020–31 Oct 2021 | ACP co-editors | Coordinators: Maria Kanakidou and Paul Zieger | Co-organizers: Mark Flanner, Hans-Christen Hansson, and Sabine Eckhardt | Information
News
07 May 2021 Robust winter warming over Eurasia under stratospheric sulfate geoengineering – the role of stratospheric dynamics

The authors find that simulated stratospheric sulfate geoengineering could lead to warmer Eurasian winters alongside a drier Mediterranean and wetting to the north.

07 May 2021 Robust winter warming over Eurasia under stratospheric sulfate geoengineering – the role of stratospheric dynamics

The authors find that simulated stratospheric sulfate geoengineering could lead to warmer Eurasian winters alongside a drier Mediterranean and wetting to the north.

29 Apr 2021 Long-term trends in air quality in major cities in the UK and India: a view from space

The authors find satellite observations of atmospheric composition generally reproduce variability in surface air pollution, so they use their long record to estimate air quality trends in major UK and Indian cities.

29 Apr 2021 Long-term trends in air quality in major cities in the UK and India: a view from space

The authors find satellite observations of atmospheric composition generally reproduce variability in surface air pollution, so they use their long record to estimate air quality trends in major UK and Indian cities.

26 Apr 2021 Observing the timescales of aerosol–cloud interactions in snapshot satellite images

Cloud responses to aerosol are time-sensitive, but this development is rarely observed. This study uses isolated aerosol perturbations from ships to measure this development and shows that macrophysical (width, cloud fraction, detectability) and microphysical (droplet number) properties of ship tracks vary strongly with time since emission, background cloud and meteorological state.

26 Apr 2021 Observing the timescales of aerosol–cloud interactions in snapshot satellite images

Cloud responses to aerosol are time-sensitive, but this development is rarely observed. This study uses isolated aerosol perturbations from ships to measure this development and shows that macrophysical (width, cloud fraction, detectability) and microphysical (droplet number) properties of ship tracks vary strongly with time since emission, background cloud and meteorological state.